Fundamentals of IoT Networks

Secure and Low Latency Communications

H. Vincent Poor

(poor@princeton.edu)

Supported in part by NSF Grants CCF-0939370 and CCF-1513915.

The Internet of Things (IoT) Vision

Salient Characteristics of the IoT

- Massive connectivity
- High energy efficiency
- Low complexity
- Light infrastructure
- Short packets
- Low latency

Primary applications are sensing, inference and control

Overview of Today's Talk

The theme:

The need for new fundamentals

Two topics motivated by the characteristics of IoT:

- Latency: finite-blocklength information theory +
- Security: physical layer issues (briefly)

Latency:

Finite-Blocklength

Information Theory +

Traditional Information Theory

Benefit

- Characterizes operational, engineering problems in terms of elegant mathematical formulas

An asymptotic theory

- Fundamental limits asymptotic in the blocklength

Limitation

Not suitable for low-latency applications as in IoT

Finite Blocklength IT: Data Transmission

- (n,M,ε) code: $P(W \neq \hat{W}) \leq \varepsilon$
- Fundamental limit: $M*(n,\varepsilon) = \max\{M: \exists an (n,M,\varepsilon) code\}$

$$R^*(n,\varepsilon) \approx \frac{\log M^*(n,\varepsilon)}{n} = C - \sqrt{\frac{V}{n}} Q^{-1}(\varepsilon)$$

$$C = E[i(X^*,Y^*)]$$
 (capacity); $V = Var[i(X^*,Y^*)]$ ("dispersion")

[Polyanskiy, et al. (2010), etc.]

Example: AWGN (SNR = 0 dB; ε = 10-3)

[Polyanskiy, et al. (2010), etc.]

Example: Spectral-Energy Efficiency Tradeoff

[Gorce, et al. (2016)]

Finite-Blocklength Compression

[Kontoiannis, et al. (2014)]

Ex: Memoryless N(0,1) Source d = 1/4; $\epsilon = 10^{-4}$

[Kostina, et al. (2012)]

Prototype Network Models

Multiple-Access Channel ("Uplink"): [Molavian]

[MolavianJazi, et al. (2013)] [Scarlett, et al. (2015)]

Broadcast Channel ("Downlink"): [Liu, et al. (2015)]

Example: Gaussian MAC Rate Region: n = 500; equal powers of 0dB; $\varepsilon = 10^{-3}$

Other Approaches to Assessing Latency

Age of Information (AoI):

- Aol: time since latest measurement has reached destination
- Assesses the freshness of data, in addition to distortion/error
- Suitable metric for real-time sensing applications in IoT

Other Approaches to Assessing Latency

The Many-Access Channel:

The number of users K(n) is fixed as the blocklength n goes to infinity.

The number of users K(n) increases with the blocklength n.

Main Ideas:

- Blocklength is proportional to latency
- System latency per user $\ell = \frac{n}{K(n)}$
- There's a tradeoff between system rate and latency

Security: Physical Layer Issues (Briefly)

Rethinking Security Design

- Conventionally, a higher layer issue: encryption, key distribution, ...
- Difficult with massive number of devices, light infrastructure, low complexity, ...
- Physical layer security provides a degree of security by exploiting imperfections in physical channels: noise, fading, ...

Wyner's Model for Data Confidentiality

- Tradeoff: reliable rate R to Bob vs. the equivocation H(W|Z) at Eve
- Secrecy capacity = maximum R such that R = H(W|Z)
- Wyner (1975): Secrecy capacity > 0 iff. Z is degraded relative to Y

Physical Layer Security: Data Confidentiality

- In general, the legitimate receiver needs an advantage over the eavesdropper – either a secret shared with the transmitter, or a better channel.
- The physical properties of radio propagation (diffusion & superposition) provide opportunities for this, via
 - fading: provides natural degradedness over time
 - interference: allows active countermeasures to eavesdropping
 - spatial diversity (MIMO, relays): creates "secrecy degrees of freedom"
 - random channels: sources of common randomness for key generation

[Poor, Schaefer (2017) Wireless Physical Layer Security PNAS]

Wiretap Channel for Finite Blocklength

 $R^*(n,\epsilon,\delta)$: maximum secret rate at a given blocklength

Semi-deterministic Wiretap Channel: $\delta = \epsilon = 10^{-3}$

$$R^*(n,\epsilon,\delta) = C_s - \sqrt{\frac{V}{n}}Q^{-1}\left(\frac{\delta}{1-\epsilon}\right) + \mathcal{O}\left(\frac{\log n}{n}\right)$$

[Yang, et al. (2017)]

Other PHY Security Issues in IoT

- Authentication
 - Probability of successful impersonation/substitution attacks [Lai, et al. (2009)]
- Attacks on MANETs
 - How many malicious nodes can be tolerated? [Liang, et al. (2011)]
- Data Injection Attacks on Smart Grids
 - Protection against stealth attacks [Sun, et al. (2019)]
- Man-in-the-Middle and Spoofing Attacks on Sensor Nets
 - Effects on CRLB in parameter estimation [Zhang, et al. (2018)]

Summary

- IoT requirements call for new fundamentals
- For latency: IoT requires tight latency tolerances
 - Finite blocklength IT helps assess latency in IoT applications, where the physical layer may predominate
- For security:
 - The wireless physical layer offers resources for providing some degree of security in IoT, where complexity and infrastructure constraints challenge traditional methods

Summary – Cont'd

- These are theoretical constructs there are many needs to connect this kind of analysis to real networks, e.g.
 - interactions with higher layers (especially latency)
 - practical schemes to approach fundamental limits
- A rich area with much work left to do!

